
Comparing Sequential and Parallel Code Review Techniques for
Formative Feedback

Andrew Luxton-Reilly
University of Auckland
Auckland, New Zealand

andrew@cs.auckland.ac.nz

Arthur Lewis
University of Auckland
Auckland, New Zealand

alew525@aucklanduni.ac.nz

Beryl Plimmer
University of Auckland
Auckland, New Zealand

b.plimmer@auckland.ac.nz

ABSTRACT
The practice of Peer Review is widespread across a range of aca-
demic disciplines. We report on a study that compared two dif-
ferent approaches of peer reviewing program code — reviewing a
sequence of solutions to the same problem (sequential code review),
and reviewing a set of multiple solutions side-by-side (parallel code
review). We found that the parallel approach was preferred by the
majority of participants in the study and there were some indica-
tions that it might be more helpful for reviewers, but the sequential
approach elicited more written comments in general, and more
specific critical comments compared with the parallel approach.
Although parallel reviews may be preferred by reviewers, using
sequential reviews appears to result in increased levels of formative
feedback for the recipient.

CCS CONCEPTS
• Social and professional topics → Computing education;

KEYWORDS
Peer review, peer assessment, peer feedback, code review, sequen-
tial code review, parallel code review, formative feedback, novice
programmers, CS1

ACM Reference Format:
Andrew Luxton-Reilly, Arthur Lewis, and Beryl Plimmer. 2018. Comparing
Sequential and Parallel Code Review Techniques for Formative Feedback.
In ACE 2018: 20th Australasian Computing Education Conference, January
30-February 2, 2018, Brisbane, QLD, Australia. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3160489.3160498

1 INTRODUCTION
Software development projects in industry frequently include code
review in the development process. Such reviews aim to identify
defects and improve the quality of the code [13, 15]. Ultimately, the
main purpose of these industry code reviews is to produce a better
software product. This contrasts with peer review in education, in
which the purpose of the review is to help students learn about
code, and to develop higher order cognitive skills [1, 4, 14]. These

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACE 2018, January 30-February 2, 2018, Brisbane, QLD, Australia
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-6340-2/18/01. . . $15.00
https://doi.org/10.1145/3160489.3160498

higher order cognitive skills may include holistic or “soft” skills
such as communication [13], giving and receiving feedback [23],
and critical thinking [4, 27].

Peer review can be formally be defined as “. . . an arrangement in
which individuals consider the amount, level, value, worth, quality,
or success of the products or outcomes of learning of peers of similar
status” [24]. In simpler terms, peer review is the process by which
a given piece of work (professional or academic) is evaluated by
one or more people with the same qualifications or competency as
the original creator(s) of that work.

Peer Review has been used in the context of academic education
for several decades, and spans areas such as Academic Writing, Sci-
ence, Engineering, Medicine, Business and Computer Science [5, 6].
Existing education literature has generally reported positive out-
comes from peer review activities in classrooms [1, 21], but there
have also been concerns over the difficulty of managing the dis-
tribution and workflow of reviews, the consistency and quality of
reviews, and the perception of some students that tasks involving
the evaluation of student work should be performed by instruc-
tors [14, 22, 28].

Many of these concerns have been addressed by recent develop-
ments in online tools, and by shifting pedagogical trends. A variety
of software tools supporting peer review have largely mitigated
the administrative cost [17]; an analysis of student peer marking
compared with expert marking of introductory programming as-
signments has demonstrated a high correlation between the expert
and peer marks [10]; and, pedagogies in which students learn by
taking on roles traditionally held by instructors are becoming more
common as software tools that handle the administrative burden
are developed [8, 11].

The focus of this paper is the review of program code. Although
some aspects of programming can be automatically evaluated using
software tools, other aspects require manual (i.e., human) oversight.
Determining the syntactic correctness of code is achievable using
standard compilers, and feedback is typically provided through
integrated development environments such as Visual Studio1 or
Eclipse2). Other objective metrics, such as the functional correct-
ness of code, can be tested with test suites like JUnit3 that may be
integrated into the development environment. Compilers and other
software tools are not yet capable of determining code quality by
considering factors such as program design, efficiency or documen-
tation. For this purpose, human intervention is necessary to give
subjective (or qualitative) feedback.

1https://www.visualstudio.com/
2https://eclipse.org/
3http://junit.org/junit4/

45

https://doi.org/10.1145/3160489.3160498
https://doi.org/10.1145/3160489.3160498
https://www.visualstudio.com/
https://eclipse.org/
http://junit.org/junit4/

ACE 2018, January 30-February 2, 2018, Brisbane, QLD, Australia Andrew Luxton-Reilly, Arthur Lewis, and Beryl Plimmer

Students engaging in peer review activities typically provide
formative feedback (sometimes described as ‘peer feedback’) on
the work authored by their peers [7]. Formative feedback helps
educators to better gauge the student reviewer’s understanding of
programming aspects [25]. Formative feedback is also reported to
be beneficial to the recipients of the review, by prompting them to
act on the reviewer’s feedback [16, 18].

The review of programming code in an academic environment
typically occurs when students are given a series of individual
solutions to a programming assignment to review. Each of these
solutions is typically reviewed in a sequential manner and inde-
pendently of each other. We denote this more traditional approach
“Sequential Code Review”.

Because code is organized into discrete chunks with well-defined
structure (such as classes, methods/functions/procedures), it is pos-
sible to lay out these discrete chunks side by side and compare
them in parallel. This has some similarities with the process that
developers go through when using the diff command to look at
differences between versions of code. However, in this case the
review process does not focus on different versions of the same
code, but rather different solutions to the same problem. We call
this alternative process for reviewing code “Parallel Code Review”.

The purpose of our research is to determine if the peer review
workflow (i.e., sequential or parallel) impacts student perception of
the peer review task, or the nature of the feedback provided. The
research questions for this study are:

• RQ1: Does the choice of sequential or parallel workflow have
an impact on the perception of the code review task?

• RQ2: Does the choice of sequential or parallel workflow
impact the nature of formative feedback?

2 METHODOLOGY
We conducted an experiment to compare code review using sequen-
tial workflow with code review using parallel workflow. We used
a counter-balanced, between subjects, experimental design. Each
participant was allocated to one of four different groups (A–D). Par-
ticipants in all groups completed two peer review tasks, one using
sequential workflow and one using parallel workflow. However,
the ordering of the workflow, and the programs that participants
reviewed were counter-balanced across the groups, as indicated in
Table 1.

Table 1: Ordering of review tasks

First task Second task
Grp Code Workflow Code Workflow

A Set 1 Sequential Set 2 Parallel
B Set 1 Parallel Set 2 Sequential

C Set 2 Sequential Set 1 Parallel
D Set 2 Parallel Set 1 Sequential

After completing each of the code review tasks, participants were
asked to complete a questionnaire, and after completing both tasks,
participants completed a third questionnaire comparing the sequen-
tial and parallel workflow. An optional interview was conducted

with a few participants at the end of the session to ask further ques-
tions about their answers in the questionnaires. Quantitative data
from the questionnaires was collated, and is reported in tabular
form in this article. Qualitative data was analyzed and grouped into
categories using Thematic Analysis [2, 3].

2.1 Participants
Participants were recruited from the population of undergraduates
and postgraduates in the Computer Science Department at the
University of Auckland.

The participant demographics are reported in Table 2. The par-
ticipants consisted of twelve undergraduates with varying levels of
expertise, and seven graduate students. Eight of the undergraduates
were first year students, either at the end of a typical introductory
programming course (i.e., a CS1 course), or those enrolled in a sec-
ond programming course focused on data structures and algorithms
(i.e., a CS2 course). Students are taught Python programming in
the first year curriculum, but use a variety of other languages in
subsequent years. The twelve graduate participants were tutors
and/or markers of several undergraduate Computer Science courses.
The participants represent a range of different ability levels, but
all of the students were able to understand the code sufficiently to
comment on the code style.

Table 2: Participant demographics

Student experience N Male Female

First year 8 5 3
Second year 2 2 0
Third year 2 2 0
Masters 3 3 0
Doctorate 4 3 1

Total 19 14 5

2.2 Tasks
For each code review task, participants were given a problem de-
scription and four samples of code that were solutions to the prob-
lem. All the programs were syntactically and functionally correct,
but varied in style and approach. Participants were asked to iden-
tify the positive aspects of each program, and to suggest possible
improvements for each program.

Specific criteria listing desirable features were not provided, but
rather participants were given general holistic grading guidelines.
The use of holistic guidelines encourages creativity, rather than
constraining comments to specific criteria, and are the preferred
approach to elicit formative feedback [20].

2.2.1 Sequential Code Review. In the sequential code review
condition, participations were given the first code sample and were
asked to complete the code review before the subsequent code
sample was made available. Participants were not permitted to
return to a previous review and revise their comments.

2.2.2 Parallel Code Review. In the parallel code review condi-
tion, participants were given all four code samples at the same time

46

Comparing Sequential and Parallel Code Review ACE 2018, January 30-February 2, 2018, Brisbane, QLD, Australia

def free_space (cargo , capacity) :
if cargo % capacity == 0:

return 0
return capacity − cargo % capacity

Figure 1: A good solution from Set 1

def free_space (cargo , capacity) :

index=0
cargo1=cargo
while (cargo1 >= capacity) :

cargo1 = cargo1−capacity
index=index+1

if cargo1 !=0:
index=index+1

return capacity ∗ index−cargo

Figure 2: A poor solution from Set 1

and were permitted to position the code adjacent to each other on
the table.

2.2.3 Code problems and solutions. Python was used as the lan-
guage for the code review task. Each code sample was relatively
simple, consisting of approximately 5–10 lines of code. The solu-
tions to be reviewed were selected from solutions submitted by
students in a previous first year course to ensure the code being
reviewed was authentic. Both problem sets used code that involved
basic flow of control, variables, expressions, conditions, loops, and
functions with parameters and return values.

The problem description for the solutions used in Set 1 was:
Write a function called free_space that calculates
the amount of free space remaining in the last box, if a
given amount of cargo is packed into boxes of a given
capacity. The function header has been provided for
you. You can assume cargo and capacity are both
integer values.

def free_space (cargo , capacity) :

An example of a solution with generally good style, and a solu-
tion with generally poor style from the code review task are shown
in Figure 1 and Figure 2 respectively.

The problem description for the solutions used in Set 2 was:
Write a function called legal_drinker that deter-
mines if a person is legally able to drink alcohol, and
returns a Boolean value of True if they are legally
permitted to drink and False otherwise. If the per-
son is over the age of 18, or the alcohol is supplied
by their guardian, then they are legally permitted
to drink. The function header has been provided for
you. You can assume the parameters under_18 and
supplied_legally are both Boolean values.

def legal_drinker (under_18 , supplied_legally) :
return not under_18 or supplied_legally

Figure 3: A good solution from Set 2

def legal_drinker (under_18 , supplied_legally) :
if under_18 == True :

if supplied_legally == True :
return True

else :
return False

else :
return True

Figure 4: A poor solution from Set 2

def legal_drinker (under_18 , supplied_legally) :

An example of a solution with generally good style, and a solu-
tion with generally poor style from the code review task are shown
in Figure 3 and Figure 4 respectively.

3 RESULTS
3.1 Perception of Review Workflow
After experiencing code review in both sequential and parallel
workflow, participants were asked which approach made it easier
to make judgments about the overall quality of a piece of code, and
why it was easier. The vast majority of participants preferred the
parallel approach. Table 3 summarizes the responses.

Table 3: Participant preferences

Group Sequential Parallel

Undergraduates 0 12
Graduates 2 5

Total 2 17

The reasons that participants gave for preferring the parallel
workflowwere grouped into three themes. The number of responses
falling into each theme is summarised in Table 4.

Explict vs implicit standards. This theme comprises com-
ments in which a participant treated parallel workflow as providing
a standard and/or benchmark for comparing code, thereby making
the holistic grading guidelines easier to interpret. For example:

I had a baseline to compare it (i.e. code) to. Guide-
lines were helpful but having another code to compare
against is easier.

Some responses in this category indicated that it was difficult for
participants to make holistic judgments about the quality of code
when they saw the code in isolation.

47

ACE 2018, January 30-February 2, 2018, Brisbane, QLD, Australia Andrew Luxton-Reilly, Arthur Lewis, and Beryl Plimmer

The grading schedule was unclear for reviewing an in-
dividual piece of work because there were no reference
points.

Differentiation. This theme captures responses that suggest it
is easier to identify differences between solutions when they are
spatially located next to one another. This category also consisted of
responses where participants explicitly and even implicitly reported
having a better sense of attention to detail while reviewing code
using parallel workflow. For example:

Easier to look at each piece of code and compare them.
Looking at it sequentially makes it slightly forgettable
and you can lose attention to detail.

and
It’s always easy and beneficial to compare what you are
reviewing to something else. It makes it easier to pick
up your mistakes and also to improve what you already
know.

Useful for novices. This theme covered responses that involved
code comparison being a good way to help people with little pro-
gramming experience (i.e., novices) learn effectively. For example:

Would be especially useful for someone with little pro-
gramming experience.

The number of responses falling into each theme is summarised
in Table 4. The majority of participants reported that the explicit
comparison performed in the parallel workflow made it easier to
determine which code was higher quality, and helped them to pay
attention to the details.

Table 4: Participant reasons for preferences

Theme Responses

Explict vs implicit standards 15
Differentiation 10
Useful for novices 4

3.2 Impact on Nature of Formative Feedback
To determine if the workflow had any impact on the formative
feedback provided by participants, we analysed both the quantity
and the quality of the review comments. In this section we use the
term “formative feedback” to refer to the comments provided by
participants on the positive and negative aspects of the code.

The code review form had separate areas for participants to
identify both positive and negative (i.e., areas with room for im-
provement) aspects of the code. We treat the feedback on each code
sample as a separate review, resulting in 76 parallel code reviews
and 76 sequential code reviews (i.e., 19 participants each completed
four reviews for each condition).

To compare the quantity of words written by participants during
the sequential code review with the quantity of words written
during the parallel code review, we calculated the average number
of words written in each condition (parallel and sequential) for each
aspect (positive and negative). Table 5 summarizes the responses.

Table 5:Meanquantity of feedback (i.e., word count) for each
aspect and review workflow.

Sequential Parallel
Code aspect N µ σ µ σ

Positive 76 8.7 7.4 4.2 3.6
Negative 76 18.9 13.3 8.3 6.6

The results suggest that more feedback was written during se-
quential code review compared with parallel code review. A 2-tailed
t-test indicated that this difference is statistically significant for both
positive and negative feedback (p < 0.001 for both aspects).

The review comments were analyzed using two different ap-
proaches. Each approach analyzed a different characteristic of the
feedback. Firstly, we explored the specificity of the feedback (Sec-
tion 3.2.1), and secondly, we examined which aspects of code style
were the subject of feedback in each condition (Section 3.2.2).

3.2.1 Specificity of Feedback. The formative feedback obtained
from participants was first analyzed by classifying it into six cate-
gories. These categories were adapted from a study conducted by
Hamer et al. [9] which investigated the differences between student
and tutor peer feedback. In this section the categories are described,
and exemplar comments from each category are provided.

Specific Positive (S+). This comprises participant comments
that are positive about specific aspects of the code. Examples of
comments in this category include:

• Meaningful variable names
• Intuitive algorithm
• Efficient — made use of modulus for calculation

Specific Negative (S-). This comprises participant comments
that are negative about specific aspects of the code. Examples of
comments in this category include:

• Unnecessary variable declaration of variable legal_drinker
• No return after if-else
• Use of for loop slows down the running time

SpecificAdvice (SA). This comprises participant comments that
provide specific advice to improving aspects of the code. Examples
of comments in this category include:

• Could replace elif with else
• Variable use not really necessary. It does improve readability
but not required. Second elif condition can be improved. Remove
age check

General Positive (G+). Feedback in this category consists of
general comments that are of a positive nature. Examples of com-
ments in this category include:

• It works! :)
• Nice Style

General Negative (G-). Feedback in this category consists of
general comments that are of a negative nature. Examples of com-
ments in this category include:

• Not efficient
• Seems incomplete

48

Comparing Sequential and Parallel Code Review ACE 2018, January 30-February 2, 2018, Brisbane, QLD, Australia

General Advice (GA). This category consists of participant re-
sponses that provided general advice of a constructive nature, but
did not refer to anything specific within the code.

• No issues but can be improved
A single sentence from a reviewer may fall into more than one of

the categories. For example, one participant comment that contains
feedback belonging to both G+ and S- is shown below:

• The code works (G+), although there are redundant conditions
(S-)

The categories of PV (personal value), and OT (off-topic) used by
Hamer et al. [9] were not applied in this study. Feedback from the
PV category was directed to the author of a given solution (e.g., ‘I
don’t get what you are trying to do here’), whereas feedback from the
OT category was irrelevant to the code review (e.g., ‘Any comments
on my marking or comments my mail is xxxxx@hotmail.com’). The
PV and OT categories were excluded from this analysis since none
of the participants in the study gave feedback belonging to these
categories. This is most likely because participants in this study
were writing feedback under experimental conditions and knew
that the recipients of the feedback were the researchers, rather than
other students.

Table 6: Number of code reviews that included specific and
general feedback of various polarities for sequential (Seq)
and parallel (Par) workflow

Feedback Type Seq Par χ2 p

Specific Positive (S+) 52 52 0.00 1.00
Specific Negative (S-) 29 16 5.33 0.02
Specific Advice (SA) 54 42 4.07 0.04
General Positive (G+) 39 31 1.69 0.19
General Negative (G-) 14 6 3.68 0.05
General Advice (GA) 3 1 - -

Table 6 reports the number of code reviews that include formative
peer feedback in each of the six feedback categories. Sequential
code review resulted in an equal or higher amount of feedback than
parallel code review in all 6 categories.

To determine which types of feedback varied significantly be-
tween the sequential and parallel review conditions, we performed
a chi-squared test (df=2, N=76) for each category. We found a sig-
nificant difference (p < 0.05) between parallel and sequential code
reviews for S- and SA, with the category of G- being borderline
significant (p = 0.055). There was insufficient data in the GA cat-
egory to warrant significance testing. The observed differences
in the categories of S-, SA, and G- suggest that the differences in
workflow affect the amount and nature of the feedback provided.
Possible reasons for these variations are discussed in Section 4.

3.2.2 Feedback on Code and Algorithm Style. The previous anal-
ysis focuses on aspects of reviews that are domain independent,
such as the specificity and polarity (positive and negative facet)
of the comments. Our domain is more specific, reviewing Python
code, so we were interested to discover which aspects of the code
were the focus of feedback from reviewers.

We therefore categorized the feedback according to the aspect
of the solution that the reviewer focused on. These categories were
established following a thematic analysis of the feedback. In this
analysis, we distinguish between feedback focused on aspects typi-
cally described as code conventions (e.g., code layout, naming of
identifiers), which we label code readability, and feedback related
to the semantics of the code (e.g., flow of control, syntax used for
a given instruction, and the algorithm used), which we label code
structure.

The four categories of feedback identified are described below,
with exemplar comments.

CodeReadability Positive (CR+). This category comprises par-
ticipant comments that are positive in nature, and identify aspects
related to typical code conventions, such as good choices of vari-
able names, and general code layout. Examples of comments in this
category include:

• Good variable names chosen
• Meaningful variable names

Code Readability Negative (CR-). This category comprises
participant comments that are negative, or that suggest chang-
ing the code, and identify aspects of the code that relate to read-
ability. These aspects include lack of white space and parenthesis,
unwanted parentheses, the absence of comments or documentation,
poor choice of variable names, or failure to adhere to variable nam-
ing conventions. Examples of comments in this category include:

• Parentheses for if-else conditions are not really required in
Python

• Missing spaces in expression
• Lack of parentheses in Boolean condition confuses readability
• Variable ‘index’ is misleading since it is not really an index

Code Structure Positive (CS+). This category comprises par-
ticipant comments that are positive in nature and relate to the
algorithm’s overall quality or style. These aspects include the al-
gorithm’s intuitive and/or innovative nature, the efficiency with
respect to computations and/or space and time complexity, or feed-
back on the elegance/succinctness of the code.

• Efficient — made use of modulus for calculation
• Well thought out — an innovative solution
• Good space and time complexity
• Nice branching style
• Concise

Code Structure Negative (CS-). This category comprises par-
ticipant comments that are negative, or that suggest changes to the
code, and which relate to the algorithm’s overall quality or style.
These aspects include redundant variables, redundant conditions,
redundant loops, or inefficient ways of writing code. Examples of
comments in this category include:

• Could replace elif with else
• Use of for loop slows down the running time
• Redundant variable declaration — cargo+1
• Bad practice to use i = i + 1. Better to use i += 1
• Nested condition makes the algorithm a bit tricky to under-
stand. This branching structure could be improved

49

xxxxx@hotmail.com

ACE 2018, January 30-February 2, 2018, Brisbane, QLD, Australia Andrew Luxton-Reilly, Arthur Lewis, and Beryl Plimmer

• It is better to use not legally_supplied and
if legally_supplied instead of
if legally_supplied == false and
legally_supplied == true

Note that many of the comments belonging to the general feed-
back categories (i.e., GA ,G+, G-) described in the previous subsec-
tion are not about code, and were therefore not categorized in our
domain-specific analysis. Examples of comments that would not
fall under any of the code-specific categories are:

• Seems incomplete (G-)
• The code works (G+)
• No issues but can be improved (GA)

Table 7: Number of code reviews that included feedback on
code readability and code structure for sequential (Seq) and
parallel (Par) workflow

Feedback Type Seq Par χ2 p

Code Readability Positive (CR+) 51 42 2.24 0.13
Code Readability Negative (CR-) 37 35 0.11 0.75
Code Structure Positive (CS+) 56 43 4.90 0.03
Code Structure Negative (CS-) 75 50 28.15 < 0.01

A summary of the number of reviews containing feedback be-
longing to each category is shown in Table 7. Sequential workflow
has resulted in a greater number of reviews containing comments
from the corresponding category compared with parallel work-
flow. To determine which categories of feedback were significantly
different, we performed a chi-squared test, (df=2, N=76), for each
category. We found a significant difference (p < 0.05) between
parallel and sequential code reviews for both of the code structure
categories (CS+ and CS-), but not for code readability (CR+ and
CR-).

4 DISCUSSION
Most participants perceived that parallel code review provided an
explicit standard or benchmark that made the review process easier.
This is consistent with the findings of a study by Williams [26],
in which students reported that they value the notion of compar-
ing different standards of work. Similarly, Hanrahan & Isaacs [12]
and Luxton-Reilly et al. [19] both reported that students liked to
compare their own work with others and such comparisons helped
them to establish expected standards.

Although participants claimed that parallel code review allowed
them to more easily focus on details, and helped them to identify
mistakes in the code, participants performing the parallel code
review task provided less feedback overall. They wrote fewer words,
gave less specific and general feedback in all categories (except for
specific positive feedback which was equal), made fewer comments
on code readability, and fewer comments on code structure.

We speculate that the observed difference in quantity of feedback
may be due to the timing of the feedback. In the sequential code
review, the feedback is written immediately after looking at the
individual piece of code. There are no other distractions and the

entirety of the feedback relates to the code that is the focus of at-
tention. This requires participants to have internalised appropriate
criteria before engaging in the peer review process, but during the
process itself, reviewers can focus on one piece of code at a time.
The workflow of parallel review entails looking at all four examples
of code simultaneously. Reviewers have to keep a particular issue
in mind while looking across all four code samples to identify if
the issue is present. It is likely that this process imposes a higher
cognitive load than looking at a single code sample, which may
make it difficult to remember all the observed differences.

It is possible that participants focused more on elements that
differed between the four solutions, and paid less attention to the
elements that were commonly shared. In explanations of why par-
ticipants found it easier to use parallel code review, they focused
on differences:

• I could quickly differentiate between good and bad code. Would
be especially useful for someone with little programming expe-
rience.

• Allows benchmarking between code, can distinguish differences
better.

• I evaluated the solution which follows python conventions the
most. So I did not have to state things that were common

Focusing on differences may result in fewer comments on elements
that are shared between all code examples. In exit interviews, some
participants were specifically asked why they wrote less for the
parallel code reviews. Their responses suggest that parallel work-
flow may require more thinking about the problem, but not all
judgements were explicitly documented. Participant comments
that illustrate this interpretation are:

• I compared pros and cons for all solutions before writing any
feedback

• The parallel review gave me more context which enabled me
to focus on the unique elements of style and judge the appro-
priateness of those elements.

It is possible that asking reviewers to explicitly compare different
code samples encourages norm-based assessment, where a given
piece of code is judged against the quality of the other code sam-
ples, rather then an internalized set of standards that might better
reflect criterion-based assessment. This may explain why common
flaws (e.g., aspects categorised as specific negative feedback) were
less frequently mentioned during parallel code review tasks. One
possible way to address this concern might be to ensure that an
ideal ‘model’ solution is included in the set of code samples to re-
view. This may encourage reviewers to mention a greater number
of possible improvements, since any negative aspect of the code
could be contrasted with the model answer.

The review tasks were conducted on paper, and the overhead of
writing the same comment on several pieces of paper in parallel
may have discouraged reviewers from commenting. A software
tool that supported parallel review might make it easier to make
comments that apply to multiple code samples (e.g., through copy
and paste functionality). However, there are significant challenges
to developing a user interface that supports parallel code review,
especially when reviews involve longer programs, or programs that
consist of multiple files.

50

Comparing Sequential and Parallel Code Review ACE 2018, January 30-February 2, 2018, Brisbane, QLD, Australia

5 THREATS TO VALIDITY
In this section we discuss several possible threats to the validity of
our findings.

Firstly, in typical peer review tasks, students create a piece of
work and subsequently review other student solutions that have
used the same specifications. In this study, the participants did not
author solutions to the problems that they were reviewing, and
furthermore, participants had a variety of prior experience which
means that most would not be considered as ’peers’ of the students
who had created the code. However, prior work on peer review
of novice programmer code has demonstrated that students and
expert markers correlate highly in marks [9, 10], and that there are
no significant differences in feedback between tutors and novices
when subjective issues of style are concerned [9]. Although the
tasks in this study were not peer review tasks, it seems likely that
the characteristic differences between the workflow will transfer
to tasks in which students are reviewing the work of their peers.

Secondly, this study was conducted in an artificial environment
in which participants were observed by one of the researchers. The
differences betweenworkflow practices of students conducting code
reviews in real educational environments may differ, particularly
when marks are at stake. In future, if a software tool supporting
parallel code review practice was deployed in a classroom setting,
there may be an opportunity to determine if the findings from the
artificial study environment transfer to a more natural classroom
setting.

Thirdly, the code review tasks conducted in this study were de-
signed to be completed in a timely fashion without imposing an
undue burden on the voluntary participants. The code being re-
viewed was therefore relatively simple. It is unknown if the findings
observed in this study would scale to more complex and lengthy
code samples.

Finally, the wording used in the instructions for participants
engaged in the sequential review tasks were slightly different from
those given in the parallel task. In the sequential review condition,
participants were asked “What do you think are the good aspects of
this program?”, while in the parallel review condition, participants
were asked “What do you think were the positive aspects of each
of these four solutions?” The difference between good and positive
is minor, but may have introduced an unintentional bias.

6 CONCLUSIONS
In this study, we have compared two different techniques to help
students review programming code. The first technique, sequential
code review involved reviewing multiple pieces of code in a tradi-
tional, sequential manner. The second approach, parallel code review
involved reviewing multiple pieces of code simultaneously. Both
these techniques helped elicit formative feedback, which has been
reported by education literature to be beneficial for both students
and educators.

Participants reported that parallel code review was easier. They
felt that it helped them focus on the details, it provided an explicit
benchmark, and it would be easier for novices. However, the forma-
tive feedback obtained from sequential code review was found to
be comprised of more written words. The feedback for categories

related to the general positive, general negative and specific neg-
ative aspects of code was found to be greater for sequential code
review. However, the number of specific positive comments was
found to consistent across both code review techniques.

The review comments were also classified according to whether
they focused on code readability or code structure, and whether
they were positive or negative (critical). In all categories, the se-
quential code review process elicited a greater number of comments
compared with parallel code review.

Although the parallel approach was preferred by the majority
of participants, it resulted in less feedback overall. While there
are some indications that parallel code reviews may be better for
reviewers, the more traditional sequential code reviews appear to
be better for the recipients of the reviews.

7 FUTUREWORK
Further investigation of the differences between parallel and sequen-
tial code review is needed to validate and generalize the findings
reported here. Future work could replicate this study in different
contexts, such as with longer code samples, or code that includes
more complex algorithms.

Although differences were observed in the feedback provided
by reviewers, we did not investigate how the feedback would be
perceived by the recipients of the review, and in particular, how it
might be used to improve their code. Future work could look at the
differences in the effectiveness of parallel and sequential workflow
for improving code quality, both for the recipients of the review,
and for the reviewers themselves.

8 ACKNOWLEDGEMENTS
The authors would like to thank the anonymous referees for their
valuable comments and helpful suggestions.

This project was approved by the University of Auckland Ethics
committee, approval number: UAHPEC 016357.

REFERENCES
[1] Karen Anewalt. 2005. Using Peer Review As a Vehicle for Communication Skill

Development and Active Learning. Journal of Computing Sciences in Colleges 21,
2 (Dec. 2005), 148–155. http://dl.acm.org/citation.cfm?id=1089053.1089074

[2] R. E. Boyatzis. 1998. Thematic Analysis and Code Development: Transforming
Qualitative Information. Sage Publications I, London.

[3] Virginia Braun and Victoria Clarke. 2006. Using Thematic Analysis in Psychology.
Qualitative Research in Psychology 3, 2 (2006), 77–101. https://doi.org/10.1191/
1478088706qp063oa

[4] Robert Davies and Teresa Berrow. 1998. An Evaluation of the Use of Computer
Supported Peer Review for DevelopingHigher-level Skills. Computers & Education
30, 1 (1998), 111–115. https://doi.org/10.1016/S0360-1315(97)00086-9

[5] Nancy Falchikov. 1995. Peer Feedback Marking: Developing Peer Assessment.
Innovations in Education and Teaching International 32, 2 (1995), 175–187.

[6] Mark Freeman and Jo McKenzie. 2001. Aligning Peer Assessment with Peer
Learning for Large Classes: The Case for an Online Self and Peer Assessment
System. In Peer Learning in Higher Education, David Boud, Ruth Cohen, and Jane
Sampson (Eds.). Kogan Page, 156–169.

[7] Sarah Gielen, Elien Peeters, Filip Dochy, Patrick Onghena, and Katrien Struyven.
2010. Improving the Effectiveness of Peer Feedback for Learning. Learning and
Instruction 20 (Aug 2010), 304–315.

[8] John Hamer, Quintin Cutts, Jana Jackova, Andrew Luxton-Reilly, Robert McCart-
ney, Helen Purchase, Charles Riedesel, Mara Saeli, Kate Sanders, and Judithe
Sheard. 2008. Contributing Student Pedagogy. SIGCSE Bulletin 40, 4 (2008),
194–212. https://doi.org/10.1145/1473195.1473242

[9] John Hamer, Helen Purchase, Andrew Luxton-Reilly, and Paul Denny. 2015. A
Comparison of Peer and Tutor Feedback. Assessment & Evaluation in Higher
Education 40, 1 (2015), 151–164.

51

http://dl.acm.org/citation.cfm?id=1089053.1089074
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1016/S0360-1315(97)00086-9
https://doi.org/10.1145/1473195.1473242

ACE 2018, January 30-February 2, 2018, Brisbane, QLD, Australia Andrew Luxton-Reilly, Arthur Lewis, and Beryl Plimmer

[10] John Hamer, Helen C. Purchase, Paul Denny, and Andrew Luxton-Reilly. 2009.
Quality of Peer Assessment in CS1. In Proceedings of the 5th International Work-
shop on Computing Education Research Workshop (ICER ’09). ACM, New York, NY,
USA, 27–36. https://doi.org/10.1145/1584322.1584327

[11] John Hamer, Helen C. Purchase, Andrew Luxton-Reilly, and Judithe Sheard.
2010. Tools for “Contributing Student Learning”. In Proceedings of the 2010
ITiCSE working group reports (ITiCSE-WGR ’10). ACM, New York, NY, USA, 1–14.
https://doi.org/10.1145/1971681.1971683

[12] Stephanie J. Hanrahan and Geoff Isaacs. 2001. Assessing Self- and Peer-
assessment: The Students’ Views. Higher Education Research & Development
20 (2001), 53–69.

[13] Christopher Hundhausen, Anukrati Agrawal, Dana Fairbrother, and Michael
Trevisan. 2009. Integrating Pedagogical Code Reviews into a CS 1 Course: An
Empirical Study. In Proceedings of the 40th ACM SIGCSE Technical Symposium on
Computer Science Education (SIGCSE ’09). ACM, New York, NY, USA, 291–295.
https://doi.org/10.1145/1508865.1508972

[14] Christopher D. Hundhausen, Pawan Agarwal, and Michael Trevisan. 2011. On-
line vs. Face-to-face Pedagogical Code Reviews: An Empirical Comparison. In
Proceedings of the 42nd SIGCSE Technical Symposium on Computer Science Educa-
tion (SIGCSE ’11). ACM, New York, NY, USA, 117–122. https://doi.org/10.1145/
1953163.1953201

[15] Karen Keefe, Judithe Sheard, and Martin Dick. 2006. Adopting XP Practices
for Teaching Object Oriented Programming. In Proceedings of the 8th Aus-
tralasian Computing Education Conference (ACE ’06). Australian Computer Society,
Inc., Darlinghurst, Australia, 91–100. http://dl.acm.org/citation.cfm?id=1151869.
1151882

[16] Sunny Lin, Eric Liu, and Shyan-Ming Yuan. 2001. Web-based peer assessment:
Feedback for students with various thinking styles. Journal of Computer Assisted
Learning 17 (Dec 2001), 420–432.

[17] Andrew Luxton-Reilly. 2009. A systematic review of tools that support peer
assessment. Computer Science Education 19, 4 (Dec 2009), 209–232. https://doi.
org/10.1080/08993400903384844

[18] Andrew Luxton-Reilly, Paul Denny, Beryl Plimmer, and Daniel Bertinshaw. 2011.
Supporting Student-generated Free-response Questions. In Proceedings of the
16th ACM Conference on Innovation and Technology in Computer Science Education
(ITiCSE ’11). ACM, New York, NY, USA, 153–157. https://doi.org/10.1145/1999747.
1999792

[19] Andrew Luxton-Reilly, Paul Denny, Beryl Plimmer, and Robert Sheehan. 2012.
Activities, Affordances and Attitude: How Student-generated Questions Assist
Learning. In Proceedings of the 17th ACM Conference on Innovation and Technology
in Computer Science Education (ITiCSE ’12). ACM, New York, NY, USA, 4–9.
https://doi.org/10.1145/2325296.2325302

[20] Russell Mark, Haritos George, and Combes Alan. 2006. Individualising Students’
Scores Using Blind and Holistic Peer Assessment. Engineering Education 1, 1
(2006), 50–60. https://doi.org/10.11120/ened.2006.01010050

[21] Yongwu Miao and Rob Koper. 2007. An Efficient and Flexible Technical Ap-
proach to Develop and Deliver Online Peer Assessment. In Proceedings of
the 8th International Conference on Computer Supported Collaborative Learn-
ing (CSCL’07). International Society of the Learning Sciences, 506–515. http:
//dl.acm.org/citation.cfm?id=1599600.1599693

[22] Ken Reily, Pam Ludford Finnerty, and Loren Terveen. 2009. Two Peers Are
Better Than One: Aggregating Peer Reviews for Computing Assignments is
Surprisingly Accurate. In Proceedings of the ACM 2009 International Conference
on Supporting Group Work (GROUP ’09). ACM, New York, NY, USA, 115–124.
https://doi.org/10.1145/1531674.1531692

[23] Elaine Silva and Dilvan Moreira. 2003. WebCoM: A Tool to Use Peer Review
to Improve Student Interaction. Journal on Educational Resources in Computing
(JERIC) 3, 1, Article 3 (Mar 2003). https://doi.org/10.1145/958795.958798

[24] Keith Topping. 1998. Peer Assessment Between Students in Colleges and Univer-
sities. Review of Educational Research 68, 3 (1998), 249–276.

[25] Scott A. Turner, Ricardo Quintana-Castillo, Manuel A. Pérez-Quiñones, and
Stephen H. Edwards. 2008. Misunderstandings About Object-oriented Design:
Experiences Using Code Reviews. In Proceedings of the 39th SIGCSE Technical
Symposium on Computer Science Education (SIGCSE ’08). ACM, New York, NY,
USA, 97–101. https://doi.org/10.1145/1352135.1352169

[26] Eira Williams. 1992. Student Attitudes Towards Approaches to Learning and
Assessment. Assessment & Evaluation in Higher Education 17, 1 (1992), 45–58.
https://doi.org/10.1080/0260293920170105

[27] William J. Wolfe. 2004. Online Student Peer Reviews. In Proceedings of the 5th
Conference on Information Technology Education (CITC5 ’04). ACM, New York,
NY, USA, 33–37. https://doi.org/10.1145/1029533.1029543

[28] Andreas Zeller. 2000. Making Students Read and Review Code. In Proceedings of
the 5th Conference on Innovation and Technology in Computer Science Education
(ITiCSE ’00). ACM, New York, NY, USA, 89–92. https://doi.org/10.1145/343048.
343090

52

https://doi.org/10.1145/1584322.1584327
https://doi.org/10.1145/1971681.1971683
https://doi.org/10.1145/1508865.1508972
https://doi.org/10.1145/1953163.1953201
https://doi.org/10.1145/1953163.1953201
http://dl.acm.org/citation.cfm?id=1151869.1151882
http://dl.acm.org/citation.cfm?id=1151869.1151882
https://doi.org/10.1080/08993400903384844
https://doi.org/10.1080/08993400903384844
https://doi.org/10.1145/1999747.1999792
https://doi.org/10.1145/1999747.1999792
https://doi.org/10.1145/2325296.2325302
https://doi.org/10.11120/ened.2006.01010050
http://dl.acm.org/citation.cfm?id=1599600.1599693
http://dl.acm.org/citation.cfm?id=1599600.1599693
https://doi.org/10.1145/1531674.1531692
https://doi.org/10.1145/958795.958798
https://doi.org/10.1145/1352135.1352169
https://doi.org/10.1080/0260293920170105
https://doi.org/10.1145/1029533.1029543
https://doi.org/10.1145/343048.343090
https://doi.org/10.1145/343048.343090

	Abstract
	1 Introduction
	2 Methodology
	2.1 Participants
	2.2 Tasks

	3 Results
	3.1 Perception of Review Workflow
	3.2 Impact on Nature of Formative Feedback

	4 Discussion
	5 Threats to Validity
	6 Conclusions
	7 Future Work
	8 Acknowledgements
	References

